Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 206
Filter
1.
J Asian Nat Prod Res ; 26(5): 616-635, 2024 May.
Article in English | MEDLINE | ID: mdl-38655696

ABSTRACT

Ulcerative colitis (UC) is a chronic recurrent inflammatory disease affecting the rectum and colon. Numerous epidemiological studies have identified smoking as a protective factor for UC. Dysbiosis of intestinal microbiota and release of inflammatory factors are well-established characteristics associated with UC. Therefore, we have observed that nicotine exhibits the potential to ameliorate colitis symptoms in UC mice. Additionally, it exerts a regulatory effect on colonic microbiota dysbiosis by promoting the growth of beneficial bacteria while suppressing harmful bacteria. Combined in vivo and in vitro investigations demonstrate that nicotine primarily impedes the assembly of NLRP3, subsequently inhibiting downstream IL-1ß secretion.


Subject(s)
Dextran Sulfate , Gastrointestinal Microbiome , NLR Family, Pyrin Domain-Containing 3 Protein , Nicotine , Animals , Gastrointestinal Microbiome/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nicotine/pharmacology , Mice , Colitis/drug therapy , Colitis/chemically induced , Mice, Inbred C57BL , Interleukin-1beta/metabolism , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Molecular Structure , Male , Dysbiosis/drug therapy , Humans
2.
PhytoKeys ; 239: 205-213, 2024.
Article in English | MEDLINE | ID: mdl-38545398

ABSTRACT

Ajaniaflavida, a new species from western Sichuan and eastern Xizang, China, is described and illustrated. It is readily assigned to A.sect.Ajania owing to its straw-colored, glossy involucres and marginally whitish scarious phyllaries. Within the section, it is distinct in being a shrub of 1-2 m in height, and in having creamy yellow florets. It is superficially similar to A.ramosa in A.sect.Phaeoscyphus, but can easily be distinguished by, among other characters, the plant height, color of the florets and margins of the phyllaries. In addition, we provide a distribution map of the new species.

3.
Diabetes Obes Metab ; 26(5): 1775-1788, 2024 May.
Article in English | MEDLINE | ID: mdl-38385898

ABSTRACT

AIM: The liver is an important metabolic organ that governs glucolipid metabolism, and its dysfunction may cause non-alcoholic fatty liver disease, type 2 diabetes mellitus, dyslipidaemia, etc. We aimed to systematic investigate the key factors related to hepatic glucose metabolism, which may be beneficial for understanding the underlying pathogenic mechanisms for obesity and diabetes mellitus. MATERIALS AND METHODS: Oral glucose tolerance test (OGTT) phenotypes and liver transcriptomes of BXD mice under chow and high-fat diet conditions were collected from GeneNetwork. QTL mapping was conducted to pinpoint genomic regions associated with glucose homeostasis. Candidate genes were further nominated using a multi-criteria approach and validated to confirm their functional relevance in vitro. RESULTS: Our results demonstrated that plasma glucose levels in OGTT were significantly affected by both diet and genetic background, with six genetic regulating loci were mapped on chromosomes 1, 4, and 7. Moreover, TEAD1, MYO7A and NDUFC2 were identified as the candidate genes. Functionally, siRNA-mediated TEAD1, MYO7A and NDUFC2 knockdown significantly decreased the glucose uptake and inhibited the transcription of genes related to insulin and glucose metabolism pathways. CONCLUSIONS: Our study contributes novel insights to the understanding of hepatic glucose metabolism, demonstrating the impact of TEAD1, MYO7A and NDUFC2 on mitochondrial function in the liver and their regulatory role in maintaining in glucose homeostasis.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Animals , Mice , Diabetes Mellitus, Type 2/complications , Diet, High-Fat , Glucose/metabolism , Insulin Resistance/physiology , Liver/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism
4.
J Cancer ; 15(5): 1462-1486, 2024.
Article in English | MEDLINE | ID: mdl-38356723

ABSTRACT

Tumor metastasis is a key factor affecting the life of patients with malignant tumors. For the past hundred years, scientists have focused on how to kill cancer cells and inhibit their metastasis in vivo, but few breakthroughs have been made. Here we hypothesized a novel mode for cancer metastasis. We show that the phagocytosis of apoptotic tumor cells by macrophages leads to their polarization into the M2 phenotype, and that the expression of stem cell related as well as drug resistance related genes was induced. Therefore, it appears that M2 macrophages have "defected" and have been transformed into the initial "metastatic cancer cells", and thus are the source, at least in part, of the distal tissue tumor metastasis. This assumption is supported by the presence of fused cells with characteristics of both macrophage and tumor cell observed in the peripheral blood and ascites of patients with ovarian cancer. By eliminating the expression of CD206 in M2 macrophages using siRNA, we show that the growth and metastasis of tumors was suppressed using both in vitro cell line and with experimental in vivo mouse models. In summary, we show that M2 macrophages in the blood circulation underwent a "change of loyalty" to become "cancer cells" that transformed into distal tissue metastasis, which could be suppressed by the knockdown of CD206 expression.

5.
J Virol ; 98(2): e0194823, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38299843

ABSTRACT

The eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation on serine 209. In a recent study, by two rounds of TMT relative quantitative proteomics, we found that phosphorylated eIF4E (p-eIF4E) favors the translation of selected mRNAs, and the encoded proteins are mainly involved in ECM-receptor, focal adhesion, and PI3K-Akt signaling. The current paper is focused on the relationship between p-eIF4E and the downstream host cell proteins, and their presumed effect on efficient entry of PEDV. We found that the depletion of membrane-residential factor TSPAN3, CD63, and ITGB2 significantly inhibited viral invasion of PEDV, and reduced the entry of pseudotyped particles PEDV-pp, SARS-CoV-pp, and SARS-CoV-2-pp. The specific antibodies of TSPAN3, CD63, and ITGB2 blocked the adsorption of PEDV into host cells. Moreover, we detected that eIF4E phosphorylation was increased at 1 h after PEDV infection, in accordance with the expression of TSPAN3, CD63, and ITGB2. Similar trends appeared in the intestines of piglets in the early stage of PEDV challenge. Compared with Vero cells, S209A-Vero cells in which eIF4E cannot be phosphorylated showed a decrease of invading PEDV virions. MNK kinase inhibitor blocked PEDV invasion, as well as reduced the accumulation of TSPAN3, CD63, and ITGB2. Further study showed that the ERK-MNK pathway was responsible for the regulation of PEDV-induced early phosphorylation of eIF4E. This paper demonstrates for the first time the connections among p-eIF4E stimulation and membrane-residential host factors. Our findings also enrich the understanding of the biological function of phosphorylated eIF4E during the viral life cycle.IMPORTANCEThe eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation. In our previous study, several host factors susceptible to a high level of p-eIF4E were found to be conducive to viral infection by coronavirus PEDV. The current paper is focused on cell membrane-residential factors, which are involved in signal pathways that are sensitive to phosphorylated eIF4E. We found that the ERK-MNK pathway was activated, which resulted in the stimulation of phosphorylation of eIF4E in early PEDV infection. Phospho-eIF4E promoted the viral invasion of PEDV by upregulating the expression of host factors TSPAN3, CD63, and ITGB2 at the translation level rather than at the transcription level. Moreover, TSPAN3, CD63, or ITGB2 facilitates the efficient entry of coronavirus SARS-CoV, SARS-CoV-2, and HCoV-OC43. Our findings broaden our insights into the dynamic phosphorylation of eIF4E during the viral life cycle, and provide further evidence that phosphorylated eIF4E regulates selective translation of host mRNA.


Subject(s)
Cell Membrane , Eukaryotic Initiation Factor-4E , Porcine epidemic diarrhea virus , Protein Biosynthesis , Virus Internalization , Animals , Cell Membrane/chemistry , Cell Membrane/genetics , Cell Membrane/metabolism , Cell Membrane/virology , Chlorocebus aethiops , Eukaryotic Initiation Factor-4E/chemistry , Eukaryotic Initiation Factor-4E/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Integrin beta Chains/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Porcine epidemic diarrhea virus/physiology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proteomics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Swine , Tetraspanins/metabolism , Vero Cells
6.
PhytoKeys ; 238: 75-83, 2024.
Article in English | MEDLINE | ID: mdl-38361982

ABSTRACT

Ligularialushuiensis, a new species from northwestern Yunnan, China, is described and illustrated. It was tentatively placed in L.sect.Ligulariaser.Ligularia on the basis of the pinnate-palmate leaf venation, racemose synflorescence and pappus which is as long as tubular corolla. Within the series, it appeared somewhat close to both L.lamarum and L.pseudolamarum. However, L.lushuiensis can be easily distinguished from the latter two species by, among other characters, the leaf margin, bract size, involucre shape and size, and number and width of ray florets. Morphologically, L.lushuiensis is also superficially similar to L.secunda but differs readily by having distally shortly yellowish and brownish puberulent stems, palmately-pinnately veined leaves regularly dentate at margin, scarious, brown and larger bracts, and larger ray laminae. In addition, a distribution map and a diagnostic key to Chinese species of L.ser.Ligularia are also provided.

7.
Curr Med Imaging ; 20: 1-7, 2024.
Article in English | MEDLINE | ID: mdl-38389353

ABSTRACT

BACKGROUND: In clinical practice, stem cell transplantation has become an effective method for treating spinal cord nerve injury. Up to now, there has been no report on teratoma caused by transplanted stem cell's abnormal differentiation in the clinic, especially in the analysis of imaging manifestations. Therefore, this article aims to analyze the PET/CT imaging manifestations of teratoma caused by stem cell transplantation to improve the imaging diagnosing capability. CASE PRESENTATION: A patient with a spinal cord injury who had received a stem cell transplant was examined by PET/CT on September 10th, 2020. The PET/CT images of the lesion showed irregular mixed low density on the right side of the erector spinae muscle area at the level of the cervical 3-5 vertebral body, with a maximum cross-section of 9.1×3.9 cm. The 18F-FDG metabolism of the lesion was increased, and the maximum standard uptake value (SUVmax) was 10.7. The boundary was unclear with the third cervical vertebra and cervical 3 and 4-level vertebral plates. Based on the patient's medical history, the lesion was diagnosed as an abnormal proliferative tumor, which was consistent with the pathological examination results. CONCLUSION: To date, there have been no clinical reports on teratomas caused by stem cell transplantation for spinal cord injury at home or abroad. This case report enhances the knowledge of the diagnosis and treatment methods of this type of disease and confirms the diagnostic value of PET/CT examination.


Subject(s)
Spinal Cord Injuries , Teratoma , Humans , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals , Tomography, X-Ray Computed/methods , Teratoma/diagnostic imaging , Teratoma/surgery , Spinal Cord Injuries/diagnostic imaging , Spinal Cord Injuries/surgery , Stem Cell Transplantation , Cervical Vertebrae/diagnostic imaging , Cervical Vertebrae/surgery
8.
J Virol ; 98(2): e0140823, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38189252

ABSTRACT

Autophagy generally functions as a cellular surveillance mechanism to combat invading viruses, but viruses have evolved various strategies to block autophagic degradation and even subvert it to promote viral propagation. White spot syndrome virus (WSSV) is the most highly pathogenic crustacean virus, but little is currently known about whether crustacean viruses such as WSSV can subvert autophagic degradation for escape. Here, we show that even though WSSV proliferation triggers the accumulation of autophagosomes, autophagic degradation is blocked in the crustacean species red claw crayfish. Interestingly, the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex including CqSNAP29, CqVAMP7, and the novel autophagosome SNARE protein CqSyx12 is required for autophagic flux to restrict WSSV replication, as revealed by gene silencing experiments. Simultaneously, the expressed WSSV tegument protein VP26, which likely localizes on autophagic membrane mediated by its transmembrane region, binds the Qb-SNARE domain of CqSNAP29 to competitively inhibit the binding of CqSyx12-Qa-SNARE with CqSNAP29-Qb-SNARE; this in turn disrupts the assembly of the CqSyx12-SNAP29-VAMP7 SNARE complex, which is indispensable for the proposed fusion of autophagosomes and lysosomes. Consequently, the autophagic degradation of WSSV is likely suppressed by the expressed VP26 protein in vivo in crayfish, thus probably protecting WSSV components from degradation via the autophagosome-lysosome pathway, resulting in evasion by WSSV. Collectively, these findings highlight how a DNA virus can subvert autophagic degradation by impairing the assembly of the SNARE complex to achieve evasion, paving the way for understanding host-DNA virus interactions from an evolutionary point of view, from crustaceans to mammals.IMPORTANCEWhite spot syndrome virus (WSSV) is one of the largest animal DNA viruses in terms of its genome size and has caused huge economic losses in the farming of crustaceans such as shrimp and crayfish. Detailed knowledge of WSSV-host interactions is still lacking, particularly regarding viral escape from host immune clearance. Intriguingly, we found that the presence of WSSV-VP26 might inhibit the autophagic degradation of WSSV in vivo in the crustacean species red claw crayfish. Importantly, this study is the first to show that viral protein VP26 functions as a core factor to benefit WSSV escape by disrupting the assembly of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, which is necessary for the proposed fusion of autophagosomes with lysosomes for subsequent degradation. These findings highlight a novel mechanism of DNA virus evasion by blocking SNARE complex assembly and identify viral VP26 as a key candidate for anti-WSSV targeting.


Subject(s)
Astacoidea , Autophagy , White spot syndrome virus 1 , Animals , Astacoidea/metabolism , Autophagosomes/metabolism , Qb-SNARE Proteins/metabolism , SNARE Proteins/genetics , SNARE Proteins/metabolism , Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins , White spot syndrome virus 1/physiology
9.
Nat Commun ; 15(1): 337, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38184634

ABSTRACT

Photocatalytic overall water splitting into hydrogen and oxygen is desirable for long-term renewable, sustainable and clean fuel production on earth. Metal sulfides are considered as ideal hydrogen-evolved photocatalysts, but their component homogeneity and typical sulfur instability cause an inert oxygen production, which remains a huge obstacle to overall water-splitting. Here, a distortion-evoked cation-site oxygen doping of ZnIn2S4 (D-O-ZIS) creates significant electronegativity differences between adjacent atomic sites, with S1 sites being electron-rich and S2 sites being electron-deficient in the local structure of S1-S2-O sites. The strong charge redistribution character activates stable oxygen reactions at S2 sites and avoids the common issue of sulfur instability in metal sulfide photocatalysis, while S1 sites favor the adsorption/desorption of hydrogen. Consequently, an overall water-splitting reaction has been realized in D-O-ZIS with a remarkable solar-to-hydrogen conversion efficiency of 0.57%, accompanying a ~ 91% retention rate after 120 h photocatalytic test. In this work, we inspire an universal design from electronegativity differences perspective to activate and stabilize metal sulfide photocatalysts for efficient overall water-splitting.

10.
Adv Mater ; 36(8): e2305763, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37811809

ABSTRACT

Spin-polarized two-dimensional (2D) materials with large and tunable spin-splitting energy promise the field of 2D spintronics. While graphene has been a canonical 2D material, its spin properties and tunability are limited. Here, this work demonstrates the emergence of robust spin-polarization in graphene with large and tunable spin-splitting energy of up to 132 meV at zero applied magnetic fields. The spin polarization is induced through a magnetic exchange interaction between graphene and the underlying ferrimagnetic oxide insulating layer, Tm3 Fe5 O12 , as confirmed by its X-ray magnetic circular dichroism (XMCD). The spin-splitting energies are directly measured and visualized by the shift in their Landau-fan diagram mapped by analyzing the measured Shubnikov-de-Haas (SdH) oscillations as a function of applied electric fields, showing consistent fit with the first-principles and machine learning calculations. Further, the observed spin-splitting energies can be tuned over a broad range between 98 and 166 meV by field cooling. The methods and results are applicable to other 2D (magnetic) materials and heterostructures, and offer great potential for developing next-generation spin logic and memory devices.

11.
Angew Chem Int Ed Engl ; 63(7): e202317267, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38158770

ABSTRACT

The electrosynthesis of hydrogen peroxide (H2 O2 ) via two-electron (2e- ) oxygen (O2 ) reduction reaction (ORR) has great potential to replace the traditional energy-intensive anthraquinone process, but the design of low-cost and highly active and selective catalysts is greatly challenging for the long-term H2 O2 production under industrial relevant current density, especially under neutral electrolytes. To address this issue, this work constructed a carboxylated hexagonal boron nitride/graphene (h-BN/G) heterojunction on the commercial activated carbon through the coupling of B, N co-doping with surface oxygen groups functionalization. The champion catalyst exhibited a high 2e- ORR selectivity (>95 %), production rate (up to 13.4 mol g-1 h-1 ), and Faradaic efficiency (FE, >95 %). The long-term H2 O2 production under the high current density of 100 mA cm-2 caused the cumulative concentration as high as 2.1 wt %. The combination of in situ Raman spectra and theoretical calculation indicated that the carboxylated h-BN/G configuration promotes the adsorption of O2 and the stabilization of the key intermediates, allowing a low energy barrier for the rate-determining step of HOOH* release from the active site and thus improving the 2e- ORR performance. The fast dye degradation by using this electrochemical synthesized H2 O2 further illustrated the promising practical application.

12.
Digit Health ; 9: 20552076231203902, 2023.
Article in English | MEDLINE | ID: mdl-37766908

ABSTRACT

Background: Although surgical methods are the most effective treatments for colon adenocarcinoma (COAD), the cure rates remain low, and recurrence rates remain high. Furthermore, platelet adhesion-related genes are gaining attention as potential regulators of tumorigenesis. Therefore, identifying the mechanisms responsible for the regulation of these genes in patients with COAD has become important. The present study aims to investigate the underlying mechanisms of platelet adhesion-related genes in COAD patients. Methods: The present study was an experimental study. Initially, the effects of platelet number and related genomic alteration on survival were explored using real-world data and the cBioPortal database, respectively. Then, the differentially expressed platelet adhesion-related genes of COAD were analyzed using the TCGA database, and patients were further classified by employing the non-negative matrix factorization (NMF) analysis method. Afterward, some of the clinical and expression characteristics were analyzed between clusters. Finally, least absolute shrinkage and selection operator regression analysis was used to establish the prognostic nomogram. All data analyses were performed using the R package. Results: High platelet counts are associated with worse survival in real-world patients, and alternations to platelet adhesion-related genes have resulted in poorer prognoses, based on online data. Based on platelet adhesion-related genes, patients with COAD were classified into two clusters by NMF-based clustering analysis. Cluster2 had a better overall survival, when compared to Cluster1. The gene copy number and enrichment analysis results revealed that two pathways were differentially enriched. In addition, the differentially expressed genes between these two clusters were enriched for POU6F1 in the transcription factor signaling pathway, and for MATN3 in the ceRNA network. Finally, a prognostic nomogram, which included the ALOX12 and ACTG1 genes, was established based on the platelet adhesion-related genes, with a concordance (C) index of 0.879 (0.848-0.910). Conclusion: The mRNA expression-based NMF was used to reveal the potential role of platelet adhesion-related genes in COAD. The series of experiments revealed the feasibility of targeting platelet adhesion-associated gene therapy.

13.
Hepatobiliary Surg Nutr ; 12(4): 507-522, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37600991

ABSTRACT

Background: There is an unmet need for accurate non-invasive methods to diagnose non-alcoholic steatohepatitis (NASH). Since impedance-based measurements of body composition are simple, repeatable and have a strong association with non-alcoholic fatty liver disease (NAFLD) severity, we aimed to develop a novel and fully automatic machine learning algorithm, consisting of a deep neural network based on impedance-based measurements of body composition to identify NASH [the bioeLectrical impEdance Analysis foR Nash (LEARN) algorithm]. Methods: A total of 1,259 consecutive subjects with suspected NAFLD were screened from six medical centers across China, of which 766 patients with biopsy-proven NAFLD were included in final analysis. These patients were randomly subdivided into the training and validation groups, in a ratio of 4:1. The LEARN algorithm was developed in the training group to identify NASH, and subsequently, tested in the validation group. Results: The LEARN algorithm utilizing impedance-based measurements of body composition along with age, sex, pre-existing hypertension and diabetes, was able to predict the likelihood of having NASH. This algorithm showed good discriminatory ability for identifying NASH in both the training and validation groups [area under the receiver operating characteristics (AUROC): 0.81, 95% CI: 0.77-0.84 and AUROC: 0.80, 95% CI: 0.73-0.87, respectively]. This algorithm also performed better than serum cytokeratin-18 neoepitope M30 (CK-18 M30) level or other non-invasive NASH scores (including HAIR, ION, NICE) for identifying NASH (P value <0.001). Additionally, the LEARN algorithm performed well in identifying NASH in different patient subgroups, as well as in subjects with partial missing body composition data. Conclusions: The LEARN algorithm, utilizing simple easily obtained measures, provides a fully automated, simple, non-invasive method for identifying NASH.

14.
HLA ; 102(5): 622-624, 2023 11.
Article in English | MEDLINE | ID: mdl-37605363

ABSTRACT

Genomic full-length sequence of HLA-B*13:64 was identified in a Chinese individual by sequence-based typing.


Subject(s)
Bone Marrow , East Asian People , Tissue Transplantation , Humans , Alleles , Base Sequence , Genomics , Histocompatibility Testing , HLA-B Antigens/genetics , Sequence Analysis, DNA , Tissue Donors
15.
BMC Gastroenterol ; 23(1): 292, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37653392

ABSTRACT

BACKGROUND: Several proteins in the tripartite-motif (TRIM) family are associated with the development of colorectal cancer (CRC), but research on the role of TRIM69 was lacking. The present study examined the correlation between TRIM69 expression and colon adenocarcinoma (COAD). METHODS: mRNA sequencing data for COAD patients was extracted from The Cancer Genome Atlas to analyze correlations between TRIM69 expression and patients' clinical features as well as survival. Potential associations with immune cells and chemosensitivity also were predicted using various algorithms in the TIMER, Limma, clusterProfiler, GeneMANIA, and Gene Set Cancer Analysis platforms. Subsequently, polymerase chain reaction analysis and immunohistochemical staining were used to detect TRIM69 expression in COAD tissue samples from real-world patients. RESULTS: TRIM69 expression was lower in COAD tissues than in normal tissues and correlated with the pathologic stage and metastasis (M category). Additionally, TRIM69 was found to be involved in several immune-related pathways, notably the NOD-like signaling pathway. These results suggest that high TRIM69 expression has the potential to enhance tumor sensitivity to 5-fluorouracil and programmed cell death protein 1 (PD-1) blockers. CONCLUSIONS: From our findings that TRIM69 expression was significantly reduced in COAD compared with non-cancer tissues and associated with pathologic stage and metastasis, we conclude that increasing TRIM69 expression and/or activity may help to improve therapeutic outcomes. Accordingly, TRIM69 represents a potentially valuable marker of metastasis and target for adjuvant therapy in COAD.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Humans , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Fluorouracil/therapeutic use , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Programmed Cell Death 1 Receptor , Algorithms , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics
16.
Medicine (Baltimore) ; 102(29): e34377, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37478220

ABSTRACT

Eosinophilic gastritis is characterized by gastrointestinal symptoms accompanied by peripheral eosinophilia. This study aims to explore the association between eosinophilic gastritis and Synaptosome Associated Protein 25 (SNAP25), and provide a new direction for the diagnosis and treatment of eosinophilic gastritis. GSE54043 was downloaded from the gene expression omnibus database. Differentially expressed genes (DEGs) were screened. The functions of common DEGs were annotated by Database for Annotation, Visualization and Integrated Discovery and Metascape. The protein-protein interaction network of common DEGs was obtained by Search Tool for the Retrieval of Interacting Genes and visualized by Cytoscape. Significant modules were identified from the protein-protein interaction network. A total of 186 patients with eosinophilic gastritis were recruited. The clinical data were recorded and the expression levels of CPE, SST, PCSK2, SNAP25, and SYT4 were detected. Pearson chi-square test and Spearman correlation coefficient were used to analyze the relationship between eosinophilic gastritis and related parameters. Univariate and multivariate Logistic regression were used for further analysis. 353 DEGs were presented. The top 10 genes screened by cytoHubb were shown, and Veen diagram figured out 5 mutual genes. Pearson's chi-square test showed that SNAP25 (P < .001) was significantly associated with eosinophilic gastritis. Spearman correlation coefficient showed a significant correlation between eosinophilic gastritis and SNAP25 (ρ = -0.569, P < .001). Univariate logistic regression analysis showed that SNAP25 (OR = 0.046, 95% CI: 0.018-0.116, P < .001) was significantly associated with eosinophilic gastritis. Multivariate logistic regression analysis showed that SNAP25 (OR = 0.024, 95% CI: 0.007-0.075, P < .001) was significantly associated with eosinophilic gastritis. The low expression of SNAP25 gene in eosinophilic gastritis is associated with a higher risk of eosinophilic gastritis.


Subject(s)
Enteritis , Eosinophilia , Humans , Gene Expression Profiling , Protein Interaction Maps , Eosinophilia/genetics , Synaptosomal-Associated Protein 25/genetics
17.
ACS Omega ; 8(22): 19843-19852, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37305265

ABSTRACT

The study of the deformation characteristics and damage evolution law of the underground water-bearing rock mass under reciprocating loads such as mine earthquake and mechanical vibration is a very crucial aspect of underground engineering. In this pursuit, the present study was envisaged to assess the deformation characteristics and damage evolution law of sandstone with different water contents under various cycles. Specifically, the uniaxial and cyclic loading and unloading tests, X-ray diffraction (XRD), and scanning electron microscope (SEM) tests of the sandstone under dry, unsaturated, and saturated conditions were carried out under laboratory conditions. Subsequently, the change laws of elastic modulus, cyclic Poisson's ratio, and irreversible strain in the loading section of sandstone under different water content conditions were analyzed. Based on the two-parameter Weibull distribution, the coupled damage evolution equations of sandstone under water content and load were established. The results showed that with an increase in the water content in the sandstone, the loading elastic modulus of the corresponding cycles exhibited a gradual decrease. Microscopic analysis revealed that kaolinite was present in the water-bearing sandstone in a lamellar structure, with flat edges and many superimposed layers, and the proportion of kaolinite gradually increased with an increase in the water content. The poor hydrophilicity and strong expansibility of kaolinite are the key factors in reducing the elastic modulus of sandstone. With the increase of the number of cycles, the cyclic Poisson's ratio of sandstone experienced three stages: an initial decrease, followed by a slow increase, and finally a rapid increase. The decrease was mainly observed in the compaction stage; the slow increase existed in the elastic deformation stage; and the rapid increase was seen in the plastic deformation stage. Furthermore, with the increase of water content, there was a gradual increase in the cyclic Poisson's ratio. The concentration degree of the distribution of the rock microelement strength (the parameter m) under the corresponding cycle of sandstone with different water content states exhibited an initial increase followed by a subsequent decrease. With the increase in the water content, the parameter m under the same cycle gradually increased, and the change rule of parameter m corresponded to the development of internal fractures in the sample. With an increase in the number of cycles, the internal damage of the rock sample gradually accumulated, and the total damage increases gradually but the growth rate decreases gradually.

18.
Int. microbiol ; 26(2): 231-242, May. 2023. graf, ilus
Article in English | IBECS | ID: ibc-220218

ABSTRACT

Fungi capable of producing fruit bodies are essential food and medicine resources. Despite recent advances in the study of microbial communities in mycorrhizospheres, little is known about the bacterial communities contained in fruit bodies. Using high-throughput sequencing, we investigated the bacterial communities in four species of mushrooms located on the alpine meadow and saline-alkali soil of the Qinghai-Tibet Plateau (QTP). Proteobacteria (51.7% on average) and Actinobacteria (28.2% on average) were the dominant phyla in all of the sampled fairy ring fruit bodies, and Acidobacteria (27.5% on average) and Proteobacteria (25.7% on average) dominated their adjacent soils. For the Agria. Bitorquis, Actinobacteria was the dominant phylum in its fruit body (67.5% on average) and adjacent soils (65.9% on average). The alpha diversity (i.e., Chao1, Shannon, Richness, and Simpson indexes) of the bacterial communities in the fruit bodies were significantly lower than those in the soil samples. All of the fungi shared more than half of their bacterial phyla and 16.2% of their total operational taxonomic units (OTUs) with their adjacent soil. Moreover, NH4+ and pH were the key factors associated with bacterial communities in the fruit bodies and soils, respectively. These results indicate that the fungi tend to create a unique niche that selects for specific members of the bacterial community. Using culture-dependent methods, we also isolated 27 bacterial species belonging to three phyla and five classes from fruit bodies and soils. The strains isolated will be useful for future research on interactions between mushroom-forming fungi and their bacterial endosymbionts.(AU)


Subject(s)
Humans , Fungi , Bacteria/classification , Soil Characteristics , High-Throughput Nucleotide Sequencing , Microbial Interactions , Mycorrhizae , China , Soil
19.
Aging (Albany NY) ; 15(6): 2158-2169, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36961417

ABSTRACT

Neuronal loss is the central abnormality occurring in brains suffering from Alzheimer's disease (AD). The notion that AD causes the death of neurons point towards protection of neuronal morphology and function as important therapeutic strategies. The perforant path projections from the entorhinal cortex to the dentate gyrus is the most vulnerable circuit with respect to AD. It's known that the perforant path is a very important structure for synaptic plasticity and cognitive functions. NgR (Nogo receptor) is not only involved in limiting injury-induced axonal growth but also in pathological features of AD. So, the mechanism of how NgR affects the perforant path needs further investigation. In this study, the effect of NgR in the perforant path on the neuronal morphology and function in APP/PS1 transgenic mice was studied. The results showed that downregulation of NgR in perforant path ameliorate the damaged morphology and decreased number of neurons in APP/PS1 mice. Concurrently, NgR knockdown enhanced dendritic complexity and increased postsynaptic protein density in APP/PS1 mice. Furthermore, the RT-PCR results indicated that there is downregulation of M1 phenotypes of microglial gene expression in the hippocampus of TG-shNgR mice. Our study suggests that NgR plays a critical role in microglial phenotype polarization, which might account for the NgR knockdown in the perforant path initiated a decrease in neuronal death and improved synaptic function. Our study provided a better understanding of the perforant path and the role of NgR in AD pathogenesis, thus offering the potential application of hippocampal neurons in treatment of AD.


Subject(s)
Alzheimer Disease , Perforant Pathway , Animals , Mice , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Disease Models, Animal , Hippocampus/metabolism , Mice, Transgenic , Neurons/metabolism , Perforant Pathway/metabolism , Perforant Pathway/pathology , Nogo Receptor 1/metabolism
20.
J Nanobiotechnology ; 21(1): 105, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36964609

ABSTRACT

Rheumatoid arthritis (RA) is a systemic immune disease characterized by synovial inflammation. Patients with RA commonly experience significant damage to their hand and foot joints, which can lead to joint deformities and even disability. Traditional treatments have several clinical drawbacks, including unclear pharmacological mechanisms and serious side effects. However, the emergence of antibody drugs offers a promising approach to overcome these limitations by specifically targeting interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and other cytokines that are closely related to the onset of RA. This approach reduces the incidence of adverse effects and contributes to significant therapeutic outcomes. Furthermore, combining these antibody drugs with drug delivery nanosystems (DDSs) can improve their tissue accumulation and bioavailability.Herein, we provide a summary of the pathogenesis of RA, the available antibody drugs and DDSs that improve the efficacy of these drugs. However, several challenges need to be addressed in their clinical applications, including patient compliance, stability, immunogenicity, immunosupression, target and synergistic effects. We propose strategies to overcome these limitations. In summary, we are optimistic about the prospects of treating RA with antibody drugs, given their specific targeting mechanisms and the potential benefits of combining them with DDSs.


Subject(s)
Antibodies, Monoclonal , Arthritis, Rheumatoid , Humans , Antibodies, Monoclonal/therapeutic use , Pharmaceutical Preparations , Arthritis, Rheumatoid/drug therapy , Inflammation , Cytokines , Tumor Necrosis Factor-alpha
SELECTION OF CITATIONS
SEARCH DETAIL
...